Design and Analysis of Sustainable and Seasonal Profit Scaling Model in Cloud Environment

Cloud is a widely used platform for intensive computing, bulk storage, and networking. In the world of cloud computing, scaling is a preferred tool for resource management and performance determination. Scaling is generally of two types: horizontal and vertical. The horizontal scale connects users’...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific programming 2019, Vol.2019 (2019), p.1-14
Hauptverfasser: Kumari, Monika, Sahoo, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cloud is a widely used platform for intensive computing, bulk storage, and networking. In the world of cloud computing, scaling is a preferred tool for resource management and performance determination. Scaling is generally of two types: horizontal and vertical. The horizontal scale connects users’ agreement with the hardware and software entities and is implemented physically as per the requirement and demand of the datacenter for its further expansion. Vertical scaling can essentially resize server without any change in code and can increase the capacity of existing hardware or software by adding resources. The present study aims at describing two approaches for scaling, one is a predator-prey method and second is genetic algorithm (GA) along with differential evolution (DE). The predator-prey method is a mathematical model used to implement vertical scaling of task for optimal resource provisioning and genetic algorithm (GA) along with differential evolution(DE) based metaheuristic approach that is used for resource scaling. In this respect, the predator-prey model introduces two algorithms, namely, sustainable and seasonal scaling algorithm (SSSA) and maximum profit scaling algorithm (MPSA). The SSSA tries to find the approximation of resource scaling and the mechanism for maximizing sustainable as well as seasonal scaling. On the other hand, the MPSA calculates the optimal cost per reservation and maximum sustainable profit. The experimental results reflect that the proposed logistic scaling-based predator-prey method (SSSA-MPSA) provides a comparable result with GA-DE algorithm in terms of execution time, average completion time, and cost of expenses incurred by the datacenter.
ISSN:1058-9244
1875-919X
DOI:10.1155/2019/7457938