Vertex types in threshold and chain graphs
A graph is called a chain graph if it is bipartite and the neighbourhoods of the vertices in each colour class form a chain with respect to inclusion. A threshold graph can be obtained from a chain graph by making adjacent all pairs of vertices in one colour class. Given a graph G, let λ be an eigen...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2019-09, Vol.269, p.159-168 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A graph is called a chain graph if it is bipartite and the neighbourhoods of the vertices in each colour class form a chain with respect to inclusion. A threshold graph can be obtained from a chain graph by making adjacent all pairs of vertices in one colour class. Given a graph G, let λ be an eigenvalue (of the adjacency matrix) of G with multiplicity k≥1. A vertex v of G is a downer, or neutral, or Parter depending whether the multiplicity of λ in G−v is k−1, or k, or k+1, respectively. We consider vertex types in the above sense in threshold and chain graphs. In particular, we show that chain graphs can have neutral vertices, disproving a conjecture by Alazemi et al. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2019.02.040 |