Vertex types in threshold and chain graphs

A graph is called a chain graph if it is bipartite and the neighbourhoods of the vertices in each colour class form a chain with respect to inclusion. A threshold graph can be obtained from a chain graph by making adjacent all pairs of vertices in one colour class. Given a graph G, let λ be an eigen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2019-09, Vol.269, p.159-168
Hauptverfasser: Anđelić, Milica, Ghorbani, Ebrahim, Simić, Slobodan K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A graph is called a chain graph if it is bipartite and the neighbourhoods of the vertices in each colour class form a chain with respect to inclusion. A threshold graph can be obtained from a chain graph by making adjacent all pairs of vertices in one colour class. Given a graph G, let λ be an eigenvalue (of the adjacency matrix) of G with multiplicity k≥1. A vertex v of G is a downer, or neutral, or Parter depending whether the multiplicity of λ in G−v is k−1, or k, or k+1, respectively. We consider vertex types in the above sense in threshold and chain graphs. In particular, we show that chain graphs can have neutral vertices, disproving a conjecture by Alazemi et al.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2019.02.040