A Novel VIII Carboxylesterase with High Hydrolytic Activity Against Ampicillin from a Soil Metagenomic Library
A novel carboxylesterase gene, named dlfae4 , was discovered and sequenced from a soil metagenomic library. The dlfae4 gene was composed of 1017 base pairs encoding 338 amino acid residues with a predicted molecular mass of 37.2 kDa. DLFae4 exhibited strong hydrolytic activity towards methyl ferulat...
Gespeichert in:
Veröffentlicht in: | Molecular biotechnology 2019-12, Vol.61 (12), p.892-904 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel carboxylesterase gene, named
dlfae4
, was discovered and sequenced from a soil metagenomic library. The
dlfae4
gene was composed of 1017 base pairs encoding 338 amino acid residues with a predicted molecular mass of 37.2 kDa. DLFae4 exhibited strong hydrolytic activity towards methyl ferulate under optimum pH and temperature conditions (pH 8.6, 50 °C) and displayed remarkable thermostability, with residual activity as high as 50% after incubation for 3 h at 60 °C. A family VIII esterase DLFae4 was found to contain a typical serine residue within the S-X-X-K motif, which serves as a catalytic nucleophile in class C β-lactamases and family VIII esterases. As a consequence of its high sequence similarity with β-lactamases, DLFae4 exhibited significant hydrolytic activity towards ampicillin. In addition, DLFae4 was found to be the first known member of family VIII carboxylesterases with phthalate-degrading ability. Site-directed mutagenesis studies revealed that Ser11, Lys14, and Tyr121 residues play an essential catalytic role in DLFae4. These new findings, which are of great importance for further in-depth research and engineering development of carboxylesterases, should advance the implementation of biotechnological applications. |
---|---|
ISSN: | 1073-6085 1559-0305 |
DOI: | 10.1007/s12033-019-00220-3 |