Resonance Reduction by Optimal Switch Angle Selection in Switched Reluctance Motor

It is well-known that current and radial vibration harmonic may cause resonance and will thus cause severe vibration and acoustic noise in a switched reluctance motor (SRM). However, not each order of harmonic will cause resonance. It has not been fully discussed which order of current and radial vi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2020-03, Vol.67 (3), p.1867-1877
Hauptverfasser: Guo, Xiaoqiang, Zhong, Rui, Zhang, Mingshu, Ding, Desheng, Sun, Weifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is well-known that current and radial vibration harmonic may cause resonance and will thus cause severe vibration and acoustic noise in a switched reluctance motor (SRM). However, not each order of harmonic will cause resonance. It has not been fully discussed which order of current and radial vibration harmonic is the most important. This paper proposes an analytical method to derive the most important order of current and radial vibration, which lays significant foundation for resonance reduction method. Then, influence of different switch angles on current and radial vibration is analytically derived and comprehensively discussed. Based on that, resonance can be reduced by optimal switch angle selection considering efficiency sacrifice. Both simulations and experiments on a three-phase sample SRM have verified the correctness of the analytical method and effectiveness of the optimal switch angle selection method.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2019.2902833