Numerical Simulation on Authigenic Barite Formation in Marine Sediments
Submarine cold seep and its associated authigenic minerals in sediment are meaningful to indicate the existence of underlying natural gas hydrate. The anaerobic oxidation of methane (AOM) is coupled with sulfate reduction (SR) and influences the dissolution and precipitation of barite. However, the...
Gespeichert in:
Veröffentlicht in: | Minerals (Basel) 2019-02, Vol.9 (2), p.98 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Submarine cold seep and its associated authigenic minerals in sediment are meaningful to indicate the existence of underlying natural gas hydrate. The anaerobic oxidation of methane (AOM) is coupled with sulfate reduction (SR) and influences the dissolution and precipitation of barite. However, the forming mechanism of barite is not yet clearly understood. In order to investigate the forming process of authigenic barite and its relationship with methane leakage flux, based on the measured data of the Qiongdongnan Basin in the Northern slope of the South China Sea, we constructed a 1D model of a sedimentary column to reproduce the formation of barite using the numerical simulation method. The results show that the original equilibrium of barite was broken by the cold seep fluids and Ba2+ was carried upward to the sulfate-rich zone leading to the formation of barite front. When there is no flux of methane from the bottom of sediment, the barite front disappears. The relationship between methane leakage flux and authigenic minerals was also discussed. It can be concluded that high methane flux corresponds to a shallow barite front in the sediment, furthermore, the barite content first increases and then decreases as the methane flux increases. At the same time, an inverse relationship between the ratio of authigenic barite to calcite and methane flux was obtained. |
---|---|
ISSN: | 2075-163X 2075-163X |
DOI: | 10.3390/min9020098 |