The Significant Roles of Mg/Ca Ratio, Cl− and SO42− in Carbonate Mineral Precipitation by the Halophile Staphylococcus epidermis Y2

Carbonate precipitation induced by microorganisms has become a hot topic in the field of carbonate sedimentology, although the effects of magnesium on biomineral formation have rarely been studied. In experiments described here, magnesium sulfate and magnesium chloride were used to investigate the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Minerals (Basel) 2018-12, Vol.8 (12), p.594
Hauptverfasser: Han, Zuozhen, Yu, Wenwen, Zhao, Hui, Zhao, Yanhong, Tucker, Maurice E., Yan, Huaxiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbonate precipitation induced by microorganisms has become a hot topic in the field of carbonate sedimentology, although the effects of magnesium on biomineral formation have rarely been studied. In experiments described here, magnesium sulfate and magnesium chloride were used to investigate the significant role played by Mg2+ on carbonate precipitation. In this study, Staphylococcus epidermidis Y2 was isolated and identified by 16S ribosomal DNA (rDNA) homology comparison and ammonia, pH, carbonic anhydrase, carbonate, and bicarbonate ions were monitored during laboratory experiments. The mineral phase, morphology, and elemental composition of precipitates were analyzed by XRD and SEM-EDS. Ultrathin slices of bacteria were analyzed by HRTEM-SAED and STEM. The results show that this bacterium releases ammonia and carbonic anhydrase to increase pH, and raise supersaturation via the large number of carbonate and bicarbonate ions that are released through carbon dioxide hydration catalyzed by carbonic anhydrase. The crystal cell density of monohydrocalcite is lower in a magnesium chloride medium, compared to one of magnesium sulfate. Crystals grow in the mode of a spiral staircase in a magnesium sulfate medium, but in a concentric circular pattern in a magnesium chloride medium. There was no obvious intracellular biomineralization taking place. The results presented here contribute to our understanding of the mechanisms of biomineralization, and to the role of Mg2+ in crystal form.
ISSN:2075-163X
2075-163X
DOI:10.3390/min8120594