Isometric embedding and Darboux integrability
Given a smooth 2-dimensional Riemannian or pseudo-Riemannian manifold ( M , g ) and an ambient 3-dimensional Riemannian or pseudo-Riemannian manifold ( N , h ) , one can ask under what circumstances does the exterior differential system I for an isometric embedding M ↪ N have particularly nice solva...
Gespeichert in:
Veröffentlicht in: | Geometriae dedicata 2019-12, Vol.203 (1), p.353-388 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 388 |
---|---|
container_issue | 1 |
container_start_page | 353 |
container_title | Geometriae dedicata |
container_volume | 203 |
creator | Clelland, J. N. Ivey, T. A. Tehseen, N. Vassiliou, P. J. |
description | Given a smooth 2-dimensional Riemannian or pseudo-Riemannian manifold
(
M
,
g
)
and an ambient 3-dimensional Riemannian or pseudo-Riemannian manifold
(
N
,
h
)
, one can ask under what circumstances does the exterior differential system
I
for an isometric embedding
M
↪
N
have particularly nice solvability properties. In this paper we give a classification of all 2-dimensional metrics
g
whose isometric embedding system into flat Riemannian or pseudo-Riemannian 3-manifolds
(
N
,
h
)
is Darboux integrable. As an illustration of the motivation behind the classification, we examine in detail one of the classified metrics,
g
0
, showing how to use its Darboux integrability in order to construct all its embeddings in finite terms of arbitrary functions. Additionally, the geometric Cauchy problem for the embedding of
g
0
is shown to be reducible to a system of two first-order ODEs for two unknown functions—or equivalently, to a single second-order scalar ODE. For a large class of initial data, this reduction permits explicit solvability of the geometric Cauchy problem for
g
0
up to quadrature. The results described for
g
0
also hold for any classified metric whose embedding system is hyperbolic. |
doi_str_mv | 10.1007/s10711-019-00441-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2311956406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311956406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3c15ee3f05da0a871f6c03983c427cc12912852d899faa187c1b84efa34876573</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoWEf_gKuC6-i9SfNayvgaGHCj65CmaekwbcekBeffW63gztWFw_nOhY-Qa4RbBFB3CUEhUkBDAYoCqTghGQrFqEGpT0k2p5IKJcQ5uUhpBwBGKZYRuklDF8bY-jx0Zaiqtm9y11f5g4vlMH3mbT-GJrqy3bfj8ZKc1W6fwtXvXZH3p8e39Qvdvj5v1vdb6pmCkXKPIgReg6gcOK2wlh640dwXTHmPzCDTglXamNo51MpjqYtQO15oJYXiK3Kz7B7i8DGFNNrdMMV-fmkZRzRCFiDnFltaPg4pxVDbQ2w7F48WwX5rsYsWO2uxP1qsmCG-QGku902If9P_UF9TxmN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311956406</pqid></control><display><type>article</type><title>Isometric embedding and Darboux integrability</title><source>SpringerLink Journals - AutoHoldings</source><creator>Clelland, J. N. ; Ivey, T. A. ; Tehseen, N. ; Vassiliou, P. J.</creator><creatorcontrib>Clelland, J. N. ; Ivey, T. A. ; Tehseen, N. ; Vassiliou, P. J.</creatorcontrib><description>Given a smooth 2-dimensional Riemannian or pseudo-Riemannian manifold
(
M
,
g
)
and an ambient 3-dimensional Riemannian or pseudo-Riemannian manifold
(
N
,
h
)
, one can ask under what circumstances does the exterior differential system
I
for an isometric embedding
M
↪
N
have particularly nice solvability properties. In this paper we give a classification of all 2-dimensional metrics
g
whose isometric embedding system into flat Riemannian or pseudo-Riemannian 3-manifolds
(
N
,
h
)
is Darboux integrable. As an illustration of the motivation behind the classification, we examine in detail one of the classified metrics,
g
0
, showing how to use its Darboux integrability in order to construct all its embeddings in finite terms of arbitrary functions. Additionally, the geometric Cauchy problem for the embedding of
g
0
is shown to be reducible to a system of two first-order ODEs for two unknown functions—or equivalently, to a single second-order scalar ODE. For a large class of initial data, this reduction permits explicit solvability of the geometric Cauchy problem for
g
0
up to quadrature. The results described for
g
0
also hold for any classified metric whose embedding system is hyperbolic.</description><identifier>ISSN: 0046-5755</identifier><identifier>EISSN: 1572-9168</identifier><identifier>DOI: 10.1007/s10711-019-00441-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebraic Geometry ; Cauchy problems ; Classification ; Convex and Discrete Geometry ; Differential Geometry ; Embedded systems ; Embedding ; Hyperbolic Geometry ; Manifolds (mathematics) ; Mathematics ; Mathematics and Statistics ; Original Paper ; Projective Geometry ; Quadratures ; Riemann manifold ; Topology</subject><ispartof>Geometriae dedicata, 2019-12, Vol.203 (1), p.353-388</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3c15ee3f05da0a871f6c03983c427cc12912852d899faa187c1b84efa34876573</cites><orcidid>0000-0001-8130-8696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10711-019-00441-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10711-019-00441-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Clelland, J. N.</creatorcontrib><creatorcontrib>Ivey, T. A.</creatorcontrib><creatorcontrib>Tehseen, N.</creatorcontrib><creatorcontrib>Vassiliou, P. J.</creatorcontrib><title>Isometric embedding and Darboux integrability</title><title>Geometriae dedicata</title><addtitle>Geom Dedicata</addtitle><description>Given a smooth 2-dimensional Riemannian or pseudo-Riemannian manifold
(
M
,
g
)
and an ambient 3-dimensional Riemannian or pseudo-Riemannian manifold
(
N
,
h
)
, one can ask under what circumstances does the exterior differential system
I
for an isometric embedding
M
↪
N
have particularly nice solvability properties. In this paper we give a classification of all 2-dimensional metrics
g
whose isometric embedding system into flat Riemannian or pseudo-Riemannian 3-manifolds
(
N
,
h
)
is Darboux integrable. As an illustration of the motivation behind the classification, we examine in detail one of the classified metrics,
g
0
, showing how to use its Darboux integrability in order to construct all its embeddings in finite terms of arbitrary functions. Additionally, the geometric Cauchy problem for the embedding of
g
0
is shown to be reducible to a system of two first-order ODEs for two unknown functions—or equivalently, to a single second-order scalar ODE. For a large class of initial data, this reduction permits explicit solvability of the geometric Cauchy problem for
g
0
up to quadrature. The results described for
g
0
also hold for any classified metric whose embedding system is hyperbolic.</description><subject>Algebraic Geometry</subject><subject>Cauchy problems</subject><subject>Classification</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Embedded systems</subject><subject>Embedding</subject><subject>Hyperbolic Geometry</subject><subject>Manifolds (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Projective Geometry</subject><subject>Quadratures</subject><subject>Riemann manifold</subject><subject>Topology</subject><issn>0046-5755</issn><issn>1572-9168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoWEf_gKuC6-i9SfNayvgaGHCj65CmaekwbcekBeffW63gztWFw_nOhY-Qa4RbBFB3CUEhUkBDAYoCqTghGQrFqEGpT0k2p5IKJcQ5uUhpBwBGKZYRuklDF8bY-jx0Zaiqtm9y11f5g4vlMH3mbT-GJrqy3bfj8ZKc1W6fwtXvXZH3p8e39Qvdvj5v1vdb6pmCkXKPIgReg6gcOK2wlh640dwXTHmPzCDTglXamNo51MpjqYtQO15oJYXiK3Kz7B7i8DGFNNrdMMV-fmkZRzRCFiDnFltaPg4pxVDbQ2w7F48WwX5rsYsWO2uxP1qsmCG-QGku902If9P_UF9TxmN4</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Clelland, J. N.</creator><creator>Ivey, T. A.</creator><creator>Tehseen, N.</creator><creator>Vassiliou, P. J.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8130-8696</orcidid></search><sort><creationdate>20191201</creationdate><title>Isometric embedding and Darboux integrability</title><author>Clelland, J. N. ; Ivey, T. A. ; Tehseen, N. ; Vassiliou, P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3c15ee3f05da0a871f6c03983c427cc12912852d899faa187c1b84efa34876573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebraic Geometry</topic><topic>Cauchy problems</topic><topic>Classification</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Embedded systems</topic><topic>Embedding</topic><topic>Hyperbolic Geometry</topic><topic>Manifolds (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Projective Geometry</topic><topic>Quadratures</topic><topic>Riemann manifold</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clelland, J. N.</creatorcontrib><creatorcontrib>Ivey, T. A.</creatorcontrib><creatorcontrib>Tehseen, N.</creatorcontrib><creatorcontrib>Vassiliou, P. J.</creatorcontrib><collection>CrossRef</collection><jtitle>Geometriae dedicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clelland, J. N.</au><au>Ivey, T. A.</au><au>Tehseen, N.</au><au>Vassiliou, P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isometric embedding and Darboux integrability</atitle><jtitle>Geometriae dedicata</jtitle><stitle>Geom Dedicata</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>203</volume><issue>1</issue><spage>353</spage><epage>388</epage><pages>353-388</pages><issn>0046-5755</issn><eissn>1572-9168</eissn><abstract>Given a smooth 2-dimensional Riemannian or pseudo-Riemannian manifold
(
M
,
g
)
and an ambient 3-dimensional Riemannian or pseudo-Riemannian manifold
(
N
,
h
)
, one can ask under what circumstances does the exterior differential system
I
for an isometric embedding
M
↪
N
have particularly nice solvability properties. In this paper we give a classification of all 2-dimensional metrics
g
whose isometric embedding system into flat Riemannian or pseudo-Riemannian 3-manifolds
(
N
,
h
)
is Darboux integrable. As an illustration of the motivation behind the classification, we examine in detail one of the classified metrics,
g
0
, showing how to use its Darboux integrability in order to construct all its embeddings in finite terms of arbitrary functions. Additionally, the geometric Cauchy problem for the embedding of
g
0
is shown to be reducible to a system of two first-order ODEs for two unknown functions—or equivalently, to a single second-order scalar ODE. For a large class of initial data, this reduction permits explicit solvability of the geometric Cauchy problem for
g
0
up to quadrature. The results described for
g
0
also hold for any classified metric whose embedding system is hyperbolic.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10711-019-00441-5</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0001-8130-8696</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0046-5755 |
ispartof | Geometriae dedicata, 2019-12, Vol.203 (1), p.353-388 |
issn | 0046-5755 1572-9168 |
language | eng |
recordid | cdi_proquest_journals_2311956406 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebraic Geometry Cauchy problems Classification Convex and Discrete Geometry Differential Geometry Embedded systems Embedding Hyperbolic Geometry Manifolds (mathematics) Mathematics Mathematics and Statistics Original Paper Projective Geometry Quadratures Riemann manifold Topology |
title | Isometric embedding and Darboux integrability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A30%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isometric%20embedding%20and%20Darboux%20integrability&rft.jtitle=Geometriae%20dedicata&rft.au=Clelland,%20J.%20N.&rft.date=2019-12-01&rft.volume=203&rft.issue=1&rft.spage=353&rft.epage=388&rft.pages=353-388&rft.issn=0046-5755&rft.eissn=1572-9168&rft_id=info:doi/10.1007/s10711-019-00441-5&rft_dat=%3Cproquest_cross%3E2311956406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311956406&rft_id=info:pmid/&rfr_iscdi=true |