Isometric embedding and Darboux integrability

Given a smooth 2-dimensional Riemannian or pseudo-Riemannian manifold ( M , g ) and an ambient 3-dimensional Riemannian or pseudo-Riemannian manifold ( N , h ) , one can ask under what circumstances does the exterior differential system I for an isometric embedding M ↪ N have particularly nice solva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2019-12, Vol.203 (1), p.353-388
Hauptverfasser: Clelland, J. N., Ivey, T. A., Tehseen, N., Vassiliou, P. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 388
container_issue 1
container_start_page 353
container_title Geometriae dedicata
container_volume 203
creator Clelland, J. N.
Ivey, T. A.
Tehseen, N.
Vassiliou, P. J.
description Given a smooth 2-dimensional Riemannian or pseudo-Riemannian manifold ( M , g ) and an ambient 3-dimensional Riemannian or pseudo-Riemannian manifold ( N , h ) , one can ask under what circumstances does the exterior differential system I for an isometric embedding M ↪ N have particularly nice solvability properties. In this paper we give a classification of all 2-dimensional metrics g whose isometric embedding system into flat Riemannian or pseudo-Riemannian 3-manifolds ( N , h ) is Darboux integrable. As an illustration of the motivation behind the classification, we examine in detail one of the classified metrics, g 0 , showing how to use its Darboux integrability in order to construct all its embeddings in finite terms of arbitrary functions. Additionally, the geometric Cauchy problem for the embedding of g 0 is shown to be reducible to a system of two first-order ODEs for two unknown functions—or equivalently, to a single second-order scalar ODE. For a large class of initial data, this reduction permits explicit solvability of the geometric Cauchy problem for g 0 up to quadrature. The results described for g 0 also hold for any classified metric whose embedding system is hyperbolic.
doi_str_mv 10.1007/s10711-019-00441-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2311956406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311956406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3c15ee3f05da0a871f6c03983c427cc12912852d899faa187c1b84efa34876573</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoWEf_gKuC6-i9SfNayvgaGHCj65CmaekwbcekBeffW63gztWFw_nOhY-Qa4RbBFB3CUEhUkBDAYoCqTghGQrFqEGpT0k2p5IKJcQ5uUhpBwBGKZYRuklDF8bY-jx0Zaiqtm9y11f5g4vlMH3mbT-GJrqy3bfj8ZKc1W6fwtXvXZH3p8e39Qvdvj5v1vdb6pmCkXKPIgReg6gcOK2wlh640dwXTHmPzCDTglXamNo51MpjqYtQO15oJYXiK3Kz7B7i8DGFNNrdMMV-fmkZRzRCFiDnFltaPg4pxVDbQ2w7F48WwX5rsYsWO2uxP1qsmCG-QGku902If9P_UF9TxmN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311956406</pqid></control><display><type>article</type><title>Isometric embedding and Darboux integrability</title><source>SpringerLink Journals - AutoHoldings</source><creator>Clelland, J. N. ; Ivey, T. A. ; Tehseen, N. ; Vassiliou, P. J.</creator><creatorcontrib>Clelland, J. N. ; Ivey, T. A. ; Tehseen, N. ; Vassiliou, P. J.</creatorcontrib><description>Given a smooth 2-dimensional Riemannian or pseudo-Riemannian manifold ( M , g ) and an ambient 3-dimensional Riemannian or pseudo-Riemannian manifold ( N , h ) , one can ask under what circumstances does the exterior differential system I for an isometric embedding M ↪ N have particularly nice solvability properties. In this paper we give a classification of all 2-dimensional metrics g whose isometric embedding system into flat Riemannian or pseudo-Riemannian 3-manifolds ( N , h ) is Darboux integrable. As an illustration of the motivation behind the classification, we examine in detail one of the classified metrics, g 0 , showing how to use its Darboux integrability in order to construct all its embeddings in finite terms of arbitrary functions. Additionally, the geometric Cauchy problem for the embedding of g 0 is shown to be reducible to a system of two first-order ODEs for two unknown functions—or equivalently, to a single second-order scalar ODE. For a large class of initial data, this reduction permits explicit solvability of the geometric Cauchy problem for g 0 up to quadrature. The results described for g 0 also hold for any classified metric whose embedding system is hyperbolic.</description><identifier>ISSN: 0046-5755</identifier><identifier>EISSN: 1572-9168</identifier><identifier>DOI: 10.1007/s10711-019-00441-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebraic Geometry ; Cauchy problems ; Classification ; Convex and Discrete Geometry ; Differential Geometry ; Embedded systems ; Embedding ; Hyperbolic Geometry ; Manifolds (mathematics) ; Mathematics ; Mathematics and Statistics ; Original Paper ; Projective Geometry ; Quadratures ; Riemann manifold ; Topology</subject><ispartof>Geometriae dedicata, 2019-12, Vol.203 (1), p.353-388</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3c15ee3f05da0a871f6c03983c427cc12912852d899faa187c1b84efa34876573</cites><orcidid>0000-0001-8130-8696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10711-019-00441-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10711-019-00441-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Clelland, J. N.</creatorcontrib><creatorcontrib>Ivey, T. A.</creatorcontrib><creatorcontrib>Tehseen, N.</creatorcontrib><creatorcontrib>Vassiliou, P. J.</creatorcontrib><title>Isometric embedding and Darboux integrability</title><title>Geometriae dedicata</title><addtitle>Geom Dedicata</addtitle><description>Given a smooth 2-dimensional Riemannian or pseudo-Riemannian manifold ( M , g ) and an ambient 3-dimensional Riemannian or pseudo-Riemannian manifold ( N , h ) , one can ask under what circumstances does the exterior differential system I for an isometric embedding M ↪ N have particularly nice solvability properties. In this paper we give a classification of all 2-dimensional metrics g whose isometric embedding system into flat Riemannian or pseudo-Riemannian 3-manifolds ( N , h ) is Darboux integrable. As an illustration of the motivation behind the classification, we examine in detail one of the classified metrics, g 0 , showing how to use its Darboux integrability in order to construct all its embeddings in finite terms of arbitrary functions. Additionally, the geometric Cauchy problem for the embedding of g 0 is shown to be reducible to a system of two first-order ODEs for two unknown functions—or equivalently, to a single second-order scalar ODE. For a large class of initial data, this reduction permits explicit solvability of the geometric Cauchy problem for g 0 up to quadrature. The results described for g 0 also hold for any classified metric whose embedding system is hyperbolic.</description><subject>Algebraic Geometry</subject><subject>Cauchy problems</subject><subject>Classification</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Embedded systems</subject><subject>Embedding</subject><subject>Hyperbolic Geometry</subject><subject>Manifolds (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Projective Geometry</subject><subject>Quadratures</subject><subject>Riemann manifold</subject><subject>Topology</subject><issn>0046-5755</issn><issn>1572-9168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoWEf_gKuC6-i9SfNayvgaGHCj65CmaekwbcekBeffW63gztWFw_nOhY-Qa4RbBFB3CUEhUkBDAYoCqTghGQrFqEGpT0k2p5IKJcQ5uUhpBwBGKZYRuklDF8bY-jx0Zaiqtm9y11f5g4vlMH3mbT-GJrqy3bfj8ZKc1W6fwtXvXZH3p8e39Qvdvj5v1vdb6pmCkXKPIgReg6gcOK2wlh640dwXTHmPzCDTglXamNo51MpjqYtQO15oJYXiK3Kz7B7i8DGFNNrdMMV-fmkZRzRCFiDnFltaPg4pxVDbQ2w7F48WwX5rsYsWO2uxP1qsmCG-QGku902If9P_UF9TxmN4</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Clelland, J. N.</creator><creator>Ivey, T. A.</creator><creator>Tehseen, N.</creator><creator>Vassiliou, P. J.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8130-8696</orcidid></search><sort><creationdate>20191201</creationdate><title>Isometric embedding and Darboux integrability</title><author>Clelland, J. N. ; Ivey, T. A. ; Tehseen, N. ; Vassiliou, P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3c15ee3f05da0a871f6c03983c427cc12912852d899faa187c1b84efa34876573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebraic Geometry</topic><topic>Cauchy problems</topic><topic>Classification</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Embedded systems</topic><topic>Embedding</topic><topic>Hyperbolic Geometry</topic><topic>Manifolds (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Projective Geometry</topic><topic>Quadratures</topic><topic>Riemann manifold</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clelland, J. N.</creatorcontrib><creatorcontrib>Ivey, T. A.</creatorcontrib><creatorcontrib>Tehseen, N.</creatorcontrib><creatorcontrib>Vassiliou, P. J.</creatorcontrib><collection>CrossRef</collection><jtitle>Geometriae dedicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clelland, J. N.</au><au>Ivey, T. A.</au><au>Tehseen, N.</au><au>Vassiliou, P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isometric embedding and Darboux integrability</atitle><jtitle>Geometriae dedicata</jtitle><stitle>Geom Dedicata</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>203</volume><issue>1</issue><spage>353</spage><epage>388</epage><pages>353-388</pages><issn>0046-5755</issn><eissn>1572-9168</eissn><abstract>Given a smooth 2-dimensional Riemannian or pseudo-Riemannian manifold ( M , g ) and an ambient 3-dimensional Riemannian or pseudo-Riemannian manifold ( N , h ) , one can ask under what circumstances does the exterior differential system I for an isometric embedding M ↪ N have particularly nice solvability properties. In this paper we give a classification of all 2-dimensional metrics g whose isometric embedding system into flat Riemannian or pseudo-Riemannian 3-manifolds ( N , h ) is Darboux integrable. As an illustration of the motivation behind the classification, we examine in detail one of the classified metrics, g 0 , showing how to use its Darboux integrability in order to construct all its embeddings in finite terms of arbitrary functions. Additionally, the geometric Cauchy problem for the embedding of g 0 is shown to be reducible to a system of two first-order ODEs for two unknown functions—or equivalently, to a single second-order scalar ODE. For a large class of initial data, this reduction permits explicit solvability of the geometric Cauchy problem for g 0 up to quadrature. The results described for g 0 also hold for any classified metric whose embedding system is hyperbolic.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10711-019-00441-5</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0001-8130-8696</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0046-5755
ispartof Geometriae dedicata, 2019-12, Vol.203 (1), p.353-388
issn 0046-5755
1572-9168
language eng
recordid cdi_proquest_journals_2311956406
source SpringerLink Journals - AutoHoldings
subjects Algebraic Geometry
Cauchy problems
Classification
Convex and Discrete Geometry
Differential Geometry
Embedded systems
Embedding
Hyperbolic Geometry
Manifolds (mathematics)
Mathematics
Mathematics and Statistics
Original Paper
Projective Geometry
Quadratures
Riemann manifold
Topology
title Isometric embedding and Darboux integrability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A30%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isometric%20embedding%20and%20Darboux%20integrability&rft.jtitle=Geometriae%20dedicata&rft.au=Clelland,%20J.%20N.&rft.date=2019-12-01&rft.volume=203&rft.issue=1&rft.spage=353&rft.epage=388&rft.pages=353-388&rft.issn=0046-5755&rft.eissn=1572-9168&rft_id=info:doi/10.1007/s10711-019-00441-5&rft_dat=%3Cproquest_cross%3E2311956406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311956406&rft_id=info:pmid/&rfr_iscdi=true