Isometric embedding and Darboux integrability

Given a smooth 2-dimensional Riemannian or pseudo-Riemannian manifold ( M , g ) and an ambient 3-dimensional Riemannian or pseudo-Riemannian manifold ( N , h ) , one can ask under what circumstances does the exterior differential system I for an isometric embedding M ↪ N have particularly nice solva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2019-12, Vol.203 (1), p.353-388
Hauptverfasser: Clelland, J. N., Ivey, T. A., Tehseen, N., Vassiliou, P. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a smooth 2-dimensional Riemannian or pseudo-Riemannian manifold ( M , g ) and an ambient 3-dimensional Riemannian or pseudo-Riemannian manifold ( N , h ) , one can ask under what circumstances does the exterior differential system I for an isometric embedding M ↪ N have particularly nice solvability properties. In this paper we give a classification of all 2-dimensional metrics g whose isometric embedding system into flat Riemannian or pseudo-Riemannian 3-manifolds ( N , h ) is Darboux integrable. As an illustration of the motivation behind the classification, we examine in detail one of the classified metrics, g 0 , showing how to use its Darboux integrability in order to construct all its embeddings in finite terms of arbitrary functions. Additionally, the geometric Cauchy problem for the embedding of g 0 is shown to be reducible to a system of two first-order ODEs for two unknown functions—or equivalently, to a single second-order scalar ODE. For a large class of initial data, this reduction permits explicit solvability of the geometric Cauchy problem for g 0 up to quadrature. The results described for g 0 also hold for any classified metric whose embedding system is hyperbolic.
ISSN:0046-5755
1572-9168
DOI:10.1007/s10711-019-00441-5