Twisted Hodge filtration: Curvature of the determinant
Given a holomorphic family f:X→S of compact complex manifolds and a relatively ample line bundle L→X, the higher direct images Rn−pf∗ΩX/Sp(L) carry a natural hermitian metric. An explicit formula for the curvature tensor of these direct images is given in [8]. We prove that the determinant of the tw...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2019-11, Vol.292 (11), p.2452-2455 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a holomorphic family f:X→S of compact complex manifolds and a relatively ample line bundle L→X, the higher direct images Rn−pf∗ΩX/Sp(L) carry a natural hermitian metric. An explicit formula for the curvature tensor of these direct images is given in [8]. We prove that the determinant of the twisted Hodge filtration FLp=⨁i≥pRn−if∗ΩX/Si(L) is (semi‐)positive on the base S if L itself is (semi‐)positive on X. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.201800418 |