Twisted Hodge filtration: Curvature of the determinant

Given a holomorphic family f:X→S of compact complex manifolds and a relatively ample line bundle L→X, the higher direct images Rn−pf∗ΩX/Sp(L) carry a natural hermitian metric. An explicit formula for the curvature tensor of these direct images is given in [8]. We prove that the determinant of the tw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2019-11, Vol.292 (11), p.2452-2455
1. Verfasser: Naumann, Philipp
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a holomorphic family f:X→S of compact complex manifolds and a relatively ample line bundle L→X, the higher direct images Rn−pf∗ΩX/Sp(L) carry a natural hermitian metric. An explicit formula for the curvature tensor of these direct images is given in [8]. We prove that the determinant of the twisted Hodge filtration FLp=⨁i≥pRn−if∗ΩX/Si(L) is (semi‐)positive on the base S if L itself is (semi‐)positive on X.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.201800418