On the gonality of stable curves

In this paper we use admissible covers to investigate the gonality of a stable curve C over C. If C is irreducible, we compare its gonality to that of its normalization. If C is reducible, we compare its gonality to that of its irreducible components. In both cases we obtain lower and upper bounds....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2019-11, Vol.292 (11), p.2338-2351
Hauptverfasser: Coelho, Juliana, Sercio, Frederico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we use admissible covers to investigate the gonality of a stable curve C over C. If C is irreducible, we compare its gonality to that of its normalization. If C is reducible, we compare its gonality to that of its irreducible components. In both cases we obtain lower and upper bounds. Furthermore, we show that four admissible covers constructed give rise to generically injective maps between Hurwitz schemes. We show that the closures of the images of three of these maps are components of the boundary of the target Hurwitz schemes, and the closure of the image of the remaining map is a component of a certain codimension‐1 subscheme of the boundary of the target Hurwitz scheme.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.201600376