The innovation algorithms for multivariable state‐space models

Summary This paper derives the input‐output representation of the dynamical system described by a linear multivariable state‐space model and the corresponding multivariate linear regressive model (ie, multivariate equation‐error model). A projection identification algorithm, a multivariate stochasti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of adaptive control and signal processing 2019-11, Vol.33 (11), p.1601-1618
Hauptverfasser: Ding, Feng, Zhang, Xiao, Xu, Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary This paper derives the input‐output representation of the dynamical system described by a linear multivariable state‐space model and the corresponding multivariate linear regressive model (ie, multivariate equation‐error model). A projection identification algorithm, a multivariate stochastic gradient identification algorithm, and a multi‐innovation stochastic gradient (MISG) identification algorithm are proposed for multivariate equation‐error systems by using the negative gradient search and the multi‐innovation identification theory. The convergence analysis of the MISG algorithm indicates that the parameter estimation errors converge to zero under the persistent excitation condition. Finally, a numerical example illustrates the effectiveness of the proposed algorithms.
ISSN:0890-6327
1099-1115
DOI:10.1002/acs.3053