A Device-to-System Perspective Regarding Self-Heating Enhanced Hot Carrier Degradation in Modern Field-Effect Transistors: A Topical Review
As foreseen by Keyes in the late 1960s, the self-heating effect has emerged as an important concern for device performance, output power density, run-time variability, and reliability of modern field-effect transistors. The self-heating effect is aggravated as the device footprint scales down for hi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2019-11, Vol.66 (11), p.4556-4565 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As foreseen by Keyes in the late 1960s, the self-heating effect has emerged as an important concern for device performance, output power density, run-time variability, and reliability of modern field-effect transistors. The self-heating effect is aggravated as the device footprint scales down for higher level of integration (low-power devices) or as the devices are operated in ultrahigh voltage regimes (high-power devices). In this article, we focus on the implications of self-heating on hot carrier degradation (HCD) of modern transistors by integrating within a coherent theoretical framework a broad range of experimental data scattered in the literature. We explain why system integration exacerbates transistor self-heating, while high-frequency digital operation ameliorates it, suggesting an opportunity for co-optimization. We conclude this article by discussing the various material-device-system design strategies to reduce HCD and suggesting open problems for further research. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2019.2941445 |