Involutions on surfaces

We use equivariant surgery to classify all involutions on closed surfaces, up to isomorphism. Work on this problem is classical, dating back to the nineteenth century, with a complete classification finally appearing in the 1990s. In this paper we give a different approach to the classification, usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of homotopy and related structures 2019-12, Vol.14 (4), p.919-992
1. Verfasser: Dugger, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use equivariant surgery to classify all involutions on closed surfaces, up to isomorphism. Work on this problem is classical, dating back to the nineteenth century, with a complete classification finally appearing in the 1990s. In this paper we give a different approach to the classification, using techniques that are more accessible to algebraic topologists as well as a new invariant (which we call the double-Dickson invariant) for distinguishing the “hard” cases.
ISSN:2193-8407
1512-2891
DOI:10.1007/s40062-019-00236-1