Involutions on surfaces
We use equivariant surgery to classify all involutions on closed surfaces, up to isomorphism. Work on this problem is classical, dating back to the nineteenth century, with a complete classification finally appearing in the 1990s. In this paper we give a different approach to the classification, usi...
Gespeichert in:
Veröffentlicht in: | Journal of homotopy and related structures 2019-12, Vol.14 (4), p.919-992 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use equivariant surgery to classify all involutions on closed surfaces, up to isomorphism. Work on this problem is classical, dating back to the nineteenth century, with a complete classification finally appearing in the 1990s. In this paper we give a different approach to the classification, using techniques that are more accessible to algebraic topologists as well as a new invariant (which we call the double-Dickson invariant) for distinguishing the “hard” cases. |
---|---|
ISSN: | 2193-8407 1512-2891 |
DOI: | 10.1007/s40062-019-00236-1 |