Commutativity preserving transformations on conjugacy classes of finite rank self-adjoint operators
Let H be a complex Hilbert space and let C be a conjugacy class of rank k self-adjoint operators on H with respect to the action of the group of unitary operators. Under the assumption that dimH≥4k we describe all bijective transformations of C preserving the commutativity in both directions. In pa...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2019-12, Vol.582, p.430-439 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let H be a complex Hilbert space and let C be a conjugacy class of rank k self-adjoint operators on H with respect to the action of the group of unitary operators. Under the assumption that dimH≥4k we describe all bijective transformations of C preserving the commutativity in both directions. In particular, it follows from this description that every such transformation is induced by a unitary or anti-unitary operator only in the case when for every operator from C the dimensions of eigenspaces are mutually distinct. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2019.08.016 |