Commutativity preserving transformations on conjugacy classes of finite rank self-adjoint operators

Let H be a complex Hilbert space and let C be a conjugacy class of rank k self-adjoint operators on H with respect to the action of the group of unitary operators. Under the assumption that dim⁡H≥4k we describe all bijective transformations of C preserving the commutativity in both directions. In pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2019-12, Vol.582, p.430-439
1. Verfasser: Pankov, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let H be a complex Hilbert space and let C be a conjugacy class of rank k self-adjoint operators on H with respect to the action of the group of unitary operators. Under the assumption that dim⁡H≥4k we describe all bijective transformations of C preserving the commutativity in both directions. In particular, it follows from this description that every such transformation is induced by a unitary or anti-unitary operator only in the case when for every operator from C the dimensions of eigenspaces are mutually distinct.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2019.08.016