A facile method for the synthesis of copper-cysteamine nanoparticles and study of ROS production for cancer treatment

Copper-cysteamine (Cu-Cy) is a novel sensitizer that can be excited by ultraviolet (UV) light, microwave (MW), ultrasound, and X-rays to generate highly toxic reactive oxygen species (ROS) for cancer cell destruction. The purpose of this study is to present a facile method for the synthesis of Cu-Cy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2019-11, Vol.7 (42), p.663-6642
Hauptverfasser: Pandey, Nil Kanatha, Chudal, Lalit, Phan, Jonathan, Lin, Liangwu, Johnson, Omar, Xing, Meiying, Liu, J. Ping, Li, Haibin, Huang, Xuejing, Shu, Yang, Chen, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Copper-cysteamine (Cu-Cy) is a novel sensitizer that can be excited by ultraviolet (UV) light, microwave (MW), ultrasound, and X-rays to generate highly toxic reactive oxygen species (ROS) for cancer cell destruction. The purpose of this study is to present a facile method for the synthesis of Cu-Cy nanoparticles. Interestingly, we were able to decrease both the stirring and heating time by about 24 and 6 times, respectively, thus making Cu-Cy nanoparticles more economical than what was reported before. 1,4-Diazabicylo[2.2.2]octane (DABCO), a well-known singlet oxygen quencher, showed that the majority of ROS produced by Cu-Cy nanoparticles upon UV and MW exposure were singlet oxygen. Moreover, ROS generated by Cu-Cy nanoparticles upon UV and MW exposure were confirmed by a known ROS tracking agent, dihydrorhodamine 123, further serving as an additional piece of evidence that Cu-Cy is a promising ROS generating agent to destroy cancer cells as well as bacteria or viruses by a radical therapeutic approach. Additionally, for the first time, the hydroxyl radical (&z.rad;OH) produced by Cu-Cy nanoparticles upon MW activation was proved by a photoluminescence (PL) technique using coumarin as a probe molecule. Remarkably, newly synthesized nanoparticles were found to be much more effective for producing ROS and killing cancer cells, suggesting that the new method may have increased the reactivity of the Cu-Cy nanoparticles due to an overall size reduction. Overall, the new method not only reduced the synthesis time but also enhanced the effectiveness of Cu-Cy nanoparticles for photodynamic therapy. A facile synthesis method of copper-cysteamine nanoparticles is reported and their application for cancer treatment through ROS-mediated mechanisms is explored.
ISSN:2050-750X
2050-7518
DOI:10.1039/c9tb01566c