Rosenthal's inequalities: \(\Delta-\)norms and quasi-Banach symmetric sequence spaces

Let \(X\) be a symmetric quasi-Banach function space with Fatou property and let \(E\) be an arbitrary symmetric quasi-Banach sequence space. Suppose that \((f_k)_{k\geq0}\subset X\) is a sequence of independent random variables. We present a necessary and sufficient condition on \(X\) such that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-10
Hauptverfasser: Jiao, Yong, Xie, Guangheng, Sukochev, Fedor, Zanin, Dmitriy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(X\) be a symmetric quasi-Banach function space with Fatou property and let \(E\) be an arbitrary symmetric quasi-Banach sequence space. Suppose that \((f_k)_{k\geq0}\subset X\) is a sequence of independent random variables. We present a necessary and sufficient condition on \(X\) such that the quantity $$\Big\|\ \Big\|\sum_{k=0}^nf_ke_k\Big\|_{E}\ \Big\|_X$$ admits an equivalent characterization in terms of disjoint copies of \((f_k)_{k=0}^n\) for every \(n\ge 0\); in particular, we obtain the deterministic description of $$\Big\|\ \Big\|\sum _{k=0}^nf_ke_k\Big\|_{\ell_q}\ \Big\|_{L_p}$$ for all \(0
ISSN:2331-8422