Transversality for local Morse homology with symmetries and applications

We prove the transversality result necessary for defining local Morse chain complexes with finite cyclic group symmetry. Our arguments use special regularized distance functions constructed using classical covering lemmas, and an inductive perturbation process indexed by the strata of the isotropy s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2019-12, Vol.293 (3-4), p.1513-1599
Hauptverfasser: Hein, Doris, Hryniewicz, Umberto, Macarini, Leonardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the transversality result necessary for defining local Morse chain complexes with finite cyclic group symmetry. Our arguments use special regularized distance functions constructed using classical covering lemmas, and an inductive perturbation process indexed by the strata of the isotropy set. A global existence theorem for symmetric Morse–Smale pairs is also proved. Regarding applications, we focus on Hamiltonian dynamics and rigorously establish a local contact homology package based on discrete action functionals. We prove a persistence theorem, analogous to the classical shifting lemma for geodesics, asserting that the iteration map is an isomorphism for good and admissible iterations. We also consider a Chas–Sullivan product on non-invariant local Morse homology, which plays the role of pair-of-pants product, and study its relationship to symplectically degenerate maxima. Finally, we explore how our invariants can be used to study bifurcation of critical points (and periodic points) under additional symmetries.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-019-02295-9