Topological Uniform Descent, Quasi-Fredholmness and Operators Originated from Semi-B-Fredholm Theory

In this paper we study operators originated from semi-B-Fredholm theory and as a consequence we get some results regarding boundaries and connected hulls of the corresponding spectra. In particular, we prove that a bounded linear operator T acting on a Banach space, having topological uniform descen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex analysis and operator theory 2019-11, Vol.13 (8), p.3595-3622
Hauptverfasser: Živković-Zlatanović, Snežana Č., Berkani, Mohammed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study operators originated from semi-B-Fredholm theory and as a consequence we get some results regarding boundaries and connected hulls of the corresponding spectra. In particular, we prove that a bounded linear operator T acting on a Banach space, having topological uniform descent, is a BR operator if and only if 0 is not an accumulation point of the associated spectrum σ R ( T ) = { λ ∈ C : T - λ I ∉ R } , where R denote any of the following classes: upper semi-Weyl operators, Weyl operators, upper semi-Fredholm operators, Fredholm operators, operators with finite (essential) descent and BR the B-regularity associated to R as in Berkani (Studia Mathematica 140(2):163–174, 2000 ). Under the stronger hypothesis of quasi-Fredholmness of T ,  we obtain a similar characterisation for T being a BR operator for much larger families of sets R .
ISSN:1661-8254
1661-8262
DOI:10.1007/s11785-019-00920-3