Triamine‐Based Aromatic Cation as a Novel Stabilizer for Efficient Perovskite Solar Cells
Operational stability of perovskite solar cells has been a challenge from the beginning of perovskite research. In general, humidity and heat are the most well‐known degradation sources for perovskites, requiring ideal design of perovskite chemistry to withstand them. Although triple‐cation perovski...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2019-11, Vol.29 (44), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Operational stability of perovskite solar cells has been a challenge from the beginning of perovskite research. In general, humidity and heat are the most well‐known degradation sources for perovskites, requiring ideal design of perovskite chemistry to withstand them. Although triple‐cation perovskite (Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3) has been already introduced as the stable perovskite material, the high reactivity of methylammonium and formamidinium in the cation sites demands further modification. Herein, 1,2,4‐triazole is suggested as an effective cation solute to improve the performance and stability of perovskite solar cells. 1,2,4‐Triazole is an aromatic cation with low dipole moment that is stable under humidity and heat. It also possesses three nitrogen atoms, forming additional hydrogen bonds in the lattice, stabilizing the material. In this study, the solar cell utilizing 1,2,4‐triazole alloying achieves a power conversion efficiency of 20.9% with superior stability under extreme condition (85 °C/85% of relative humidity (RH), encapsulated) for 700 h. The 1,2,4‐triazole‐alloyed perovskite exhibits reduced trap density and film roughness and enhanced carrier lifetime with electrical conductivity, suggesting an ideal perovskite structure for efficient and stable optoelectronic applications.
1,2,4‐triazole is a stable and efficient aromatic compound with a triamine structure that can improve the bond strength and electronic properties of perovskite with reduced carrier traps. Proper alloying of 1,2,4‐triazole greatly stabilizes triple‐cation perovskite, allowing extremely high stability under 85 °C/85% relative humidity for 700 h and a high power conversion efficiency of 20.9% with spiro‐OMeTAD as a hole‐transporting material. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.201905190 |