New insight into design of highly ordered calcium silicate hydrate with graphene oxide

Calcium silicate hydrate (C–S–H) is the main hydration product of cement and the most important binder that plays a pivotal role in the mechanical properties of concrete. However, one of the major drawbacks of C–S–H is its high brittleness and low flexural strength due to its disordered structure at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2020-01, Vol.103 (1), p.681-691
Hauptverfasser: Yao, Shun, Zou, Fubing, Hu, Chuanlin, Wang, Fazhou, Hu, Shuguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Calcium silicate hydrate (C–S–H) is the main hydration product of cement and the most important binder that plays a pivotal role in the mechanical properties of concrete. However, one of the major drawbacks of C–S–H is its high brittleness and low flexural strength due to its disordered structure at the nano‐ and micro‐scales. Therefore, this study adopts graphene oxide (GO) to modify the structure of C–S–H, and investigates the effects of synthetic methods on the structure of C–S–H–GO composites. In this study, the highly ordered C–S–H–GO composite is successfully synthesized and exhibits itself the high toughness. Moreover, the formation mechanism of the highly ordered C–S–H–GO composite is explored and discussed, which provides a new insight into the design of high‐toughness cement‐based materials.
ISSN:0002-7820
1551-2916
DOI:10.1111/jace.16749