Study on Dynamic Service Migration Strategy with Energy Optimization in Mobile Edge Computing
In the mobile edge computing (MEC) platform, tasks that are being performed often change due to mobile device migration. In order to improve the energy utilization of the MEC platform and the migration process of the mobile terminal and to ensure effective and continuous operation of services, dynam...
Gespeichert in:
Veröffentlicht in: | Mobile information systems 2019, Vol.2019 (2019), p.1-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the mobile edge computing (MEC) platform, tasks that are being performed often change due to mobile device migration. In order to improve the energy utilization of the MEC platform and the migration process of the mobile terminal and to ensure effective and continuous operation of services, dynamic service migration strategy with energy optimization is required. Aiming at the problem of energy consumption optimization of dynamic service migration with the far-near effect in mobile networks, this article proposes a dynamic service migration strategy with energy optimization, which ensures the performance requirements of the service by considering the minimum energy cost of the relevant equipment during the dynamic migration process. First, by analyzing the relationship between migration distance and equipment transmit power, the energy consumption model associated with the migration distance is established. Then, according to the task dynamic service migration scenario, the dynamic service migration energy consumption model is constructed, so as to obtain the reward function for migrating energy consumption. Finally, the dynamic service migration strategy with energy optimization is realized through the optimal migration energy consumption expectation, which is obtained by the optimal stopping theory. The experimental results show that the optimization strategy proposed in this article can effectively reduce the energy consumption of dynamic service migration in different simulation environments and can improve the dynamic migration performance. |
---|---|
ISSN: | 1574-017X 1875-905X |
DOI: | 10.1155/2019/5794870 |