A Class of Parabolic Equations Driven by the Mean Curvature Flow
We study a class of parabolic equations which can be viewed as a generalized mean curvature flow acting on cylindrically symmetric surfaces with a Dirichlet condition on the boundary. We prove the existence of a unique solution by means of an approximation scheme. We also develop the theory of asymp...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Edinburgh Mathematical Society 2019-02, Vol.62 (1), p.135-163 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study a class of parabolic equations which can be viewed as a generalized mean curvature flow acting on cylindrically symmetric surfaces with a Dirichlet condition on the boundary. We prove the existence of a unique solution by means of an approximation scheme. We also develop the theory of asymptotic stability for solutions of general parabolic problems. |
---|---|
ISSN: | 0013-0915 1464-3839 |
DOI: | 10.1017/S001309151800038X |