A computational method for large‐scale differential symmetric Stein equation

We propose a numerical method for solving large‐scale differential symmetric Stein equations having low‐rank right constant term. Our approach is based on projection the given problem onto a Krylov subspace then solving the low dimensional matrix problem by using an integration method, and the origi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2019-11, Vol.42 (16), p.5438-5445
Hauptverfasser: Güldoğan Dericioğlu, Yaprak, Kurulay, Muhammet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a numerical method for solving large‐scale differential symmetric Stein equations having low‐rank right constant term. Our approach is based on projection the given problem onto a Krylov subspace then solving the low dimensional matrix problem by using an integration method, and the original problem solution is built by using obtained low‐rank approximate solution. Using the extended block Arnoldi process and backward differentiation formula (BDF), we give statements of the approximate solution and corresponding residual. Some numerical results are given to show the efficiency of the proposed method.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.5405