The factorization property of \(\ell^\infty(X_k)\)
In this paper we consider the following problem: Let \(X_k\), be a Banach space with a normalized basis \((e_{(k,j)})_j\), whose biorthogonals are denoted by \((e_{(k,j)}^*)_j\), for \(k\in\mathbb{N}\), let \(Z=\ell^\infty(X_k:k\in\mathbb{N})\) be their \(\ell^\infty\)-sum, and let \(T:Z\to Z\) be a...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we consider the following problem: Let \(X_k\), be a Banach space with a normalized basis \((e_{(k,j)})_j\), whose biorthogonals are denoted by \((e_{(k,j)}^*)_j\), for \(k\in\mathbb{N}\), let \(Z=\ell^\infty(X_k:k\in\mathbb{N})\) be their \(\ell^\infty\)-sum, and let \(T:Z\to Z\) be a bounded linear operator, with a large diagonal, i.e. $$\inf_{k,j} \big|e^*_{(k,j)}(T(e_{(k,j)})\big|>0.$$ Under which condition does the identity on \(Z\) factor through \(T\)? The purpose of this paper is to formulate general conditions for which the answer is positive. |
---|---|
ISSN: | 2331-8422 |