The factorization property of \(\ell^\infty(X_k)\)

In this paper we consider the following problem: Let \(X_k\), be a Banach space with a normalized basis \((e_{(k,j)})_j\), whose biorthogonals are denoted by \((e_{(k,j)}^*)_j\), for \(k\in\mathbb{N}\), let \(Z=\ell^\infty(X_k:k\in\mathbb{N})\) be their \(\ell^\infty\)-sum, and let \(T:Z\to Z\) be a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-10
Hauptverfasser: Lechner, R, Motakis, P, Müller, P F X, Schlumprecht, Th
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we consider the following problem: Let \(X_k\), be a Banach space with a normalized basis \((e_{(k,j)})_j\), whose biorthogonals are denoted by \((e_{(k,j)}^*)_j\), for \(k\in\mathbb{N}\), let \(Z=\ell^\infty(X_k:k\in\mathbb{N})\) be their \(\ell^\infty\)-sum, and let \(T:Z\to Z\) be a bounded linear operator, with a large diagonal, i.e. $$\inf_{k,j} \big|e^*_{(k,j)}(T(e_{(k,j)})\big|>0.$$ Under which condition does the identity on \(Z\) factor through \(T\)? The purpose of this paper is to formulate general conditions for which the answer is positive.
ISSN:2331-8422