Caristi–Kirk and Oettli–Théra ball spaces and applications
Based on the theory of ball spaces introduced by Kuhlmann and Kuhlmann, we introduce and study Caristi–Kirk and Oettli–Théra ball spaces. We show that if the underlying metric space is complete, then these have a very strong property: every ball contains a singleton ball. This fact provides quick pr...
Gespeichert in:
Veröffentlicht in: | Journal of fixed point theory and applications 2019-12, Vol.21 (4), p.1-17, Article 98 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Based on the theory of ball spaces introduced by Kuhlmann and Kuhlmann, we introduce and study Caristi–Kirk and Oettli–Théra ball spaces. We show that if the underlying metric space is complete, then these have a very strong property: every ball contains a singleton ball. This fact provides quick proofs for several results which are equivalent to the Caristi–Kirk fixed point theorem, namely Ekeland’s variational principles, the Oettli–Théra theorem, Takahashi’s theorem and the flower petal theorem. |
---|---|
ISSN: | 1661-7738 1661-7746 |
DOI: | 10.1007/s11784-019-0729-4 |