Leveraging directed causal discovery to detect latent common causes

The discovery of causal relationships is a fundamental problem in science and medicine. In recent years, many elegant approaches to discovering causal relationships between two variables from observational data have been proposed. However, most of these deal only with purely directed causal relation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-06
Hauptverfasser: Lee, Ciarán M, Hart, Christopher, Richens, Jonathan G, Johri, Saurabh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The discovery of causal relationships is a fundamental problem in science and medicine. In recent years, many elegant approaches to discovering causal relationships between two variables from observational data have been proposed. However, most of these deal only with purely directed causal relationships and cannot detect latent common causes. Here, we devise a general heuristic which takes a causal discovery algorithm that can only distinguish purely directed causal relations and modifies it to also detect latent common causes. We apply our method to two directed causal discovery algorithms, the Information Geometric Causal Inference of (Daniusis et al., 2010) and the Kernel Conditional Deviance for Causal Inference of (Mitrovic, Sejdinovic, & Teh, 2018), and extensively test on synthetic data -- detecting latent common causes in additive, multiplicative and complex noise regimes -- and on real data, where we are able to detect known common causes. In addition to detecting latent common causes, our experiments demonstrate that both the modified algorithms preserve the performance of the original in distinguishing directed causal relations.
ISSN:2331-8422