Synchronization patterns in a blinking multilayer neuronal network

Synchronization is one of the most prominent collective behaviors in neuroscience which can be associated with information processing and many pathological patterns of the brain. Since multilayer networks have crucial roles in better understanding the real complex systems, in this paper, we study a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. ST, Special topics Special topics, 2019-10, Vol.228 (11), p.2465-2474
Hauptverfasser: Parastesh, Fatemeh, Chen, Chao-Yang, Azarnoush, Hamed, Jafari, Sajad, Hatef, Boshra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synchronization is one of the most prominent collective behaviors in neuroscience which can be associated with information processing and many pathological patterns of the brain. Since multilayer networks have crucial roles in better understanding the real complex systems, in this paper, we study a two-layer neuronal network of Hindmarsh–Rose neurons. Moreover, the network is considered to have blinking structure which can refer to the duration of spikes arrivals and also the synaptic plasticity. The blinking network is composed of the non-locally coupled neurons and time-variant on–off couplings between any other pair of neurons. Particularly, we investigate the synchronization patterns emerging in the network by varying coupling strength and wiring probability, in different values of external current. Variation of the coupling parameters can cause the emergence of various dynamical states such as chimera state, imperfect synchronization and change of synchronous spikes to synchronous bursts or vice versa. It can also lead to synchronization transition between FHC and FH bursting types.
ISSN:1951-6355
1951-6401
DOI:10.1140/epjst/e2019-800203-3