A note on resolvability

A topological space is said to be resolvable if it has two disjoint dense subsets. If ℵ is a cardinal number(finite or infinite), a topological space is said to be ℵ -resolvable if it has a paiwise disjoint family of ℵ many dense subsets. Illanes [ 3 ] showed that a topological space which is κ -res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Hungarica 2019-12, Vol.159 (2), p.669-673
1. Verfasser: Bhaskara Rao, K. P. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A topological space is said to be resolvable if it has two disjoint dense subsets. If ℵ is a cardinal number(finite or infinite), a topological space is said to be ℵ -resolvable if it has a paiwise disjoint family of ℵ many dense subsets. Illanes [ 3 ] showed that a topological space which is κ -resolvable for every finite integer κ is necessarily ℵ 0 -resolvable. We generalize this result to infinite cardinals. We show that if a topological space X is κ -resolvable for every κ < ℵ and if cofinality of ℵ is ℵ 0 , then, X is ℵ -resolvable.
ISSN:0236-5294
1588-2632
DOI:10.1007/s10474-019-00927-4