Large‐Amplitude Quasi‐10‐Day Waves in the Middle Atmosphere During Final Warmings

Geopotential height measurements from the Aura Microwave Limb Sounder between 9‐ and 97‐km altitudes during 2004–2018 are used to examine long‐period (3–20 days) wave activity during the Northern Hemisphere winter and spring, with the primary focus on the response of normal mode Rossby waves in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2019-09, Vol.124 (17-18), p.9874-9892
Hauptverfasser: Yamazaki, Y., Matthias, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Geopotential height measurements from the Aura Microwave Limb Sounder between 9‐ and 97‐km altitudes during 2004–2018 are used to examine long‐period (3–20 days) wave activity during the Northern Hemisphere winter and spring, with the primary focus on the response of normal mode Rossby waves in the middle atmosphere to sudden stratospheric warmings (SSWs). Unusually large westward propagating waves with Zonal Wave Number 1 and period ∼10 days are observed at 55° latitude at the stratopause height (∼48 km) and above following final warmings of 2016, 2015, and 2005. In each case, large‐amplitude waves are observed for the duration of two to three wave cycles. Characteristics of the waves are in conformity with the second antisymmetric Rossby normal mode of Zonal Wave Number 1, or the quasi‐10‐day wave. The growth rate of the waves is significantly greater than the classical normal mode in the upper stratosphere (approximately 30–50 km) where instability conditions are met, indicating the amplification or excitation of the waves in that region. The response of the quasi‐10‐day wave during midwinter SSWs, and also during the spring transition without an SSW, is not as obvious as the wave response during final warmings. The results suggest that not only the occurrence of SSW but also the seasonal timing of SSW is an important factor for the transient variability of the quasi‐10‐day wave in the middle atmosphere. Key Points Large‐amplitude quasi‐10‐day waves are observed in the middle atmosphere following final warmings of 2016, 2015, and 2005 Amplification of the wave is attributed to barotropic/baroclinic instability Not only the occurrence of SSW but also the seasonal timing of SSW is important for the wave variability
ISSN:2169-897X
2169-8996
DOI:10.1029/2019JD030634