Monogenic dihedral quartic extensions
In this paper, we prove that the number of monogenic dihedral quartic extensions of absolute discriminants ≤ X is of size O ( X 3 4 ( log X ) 3 ) .
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2019-11, Vol.50 (2), p.459-464 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 464 |
---|---|
container_issue | 2 |
container_start_page | 459 |
container_title | The Ramanujan journal |
container_volume | 50 |
creator | Kim, Henry H. |
description | In this paper, we prove that the number of monogenic dihedral quartic extensions of absolute discriminants
≤
X
is of size
O
(
X
3
4
(
log
X
)
3
)
. |
doi_str_mv | 10.1007/s11139-018-0049-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2307764669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2307764669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-959f6d30fc35c0c0aabd328e799e2085878daf0c46daed5fdc646def90b0501b3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFtBPEYnyWaTHKX4BRUveg7ZfNQtNWmTXdB_b8oKnjzNy_C8M_AgdEnghgCI20IIYQoDkRigqeEIzQgXFCsG7LhmJiluQMEpOitlAxUCJmbo-iXFtPaxtwvXf3iXzXaxH00e6sJ_DT6WPsVyjk6C2RZ_8Tvn6P3h_m35hFevj8_LuxW2tJUDVlyF1jEIlnELFozpHKPSC6U8BcmlkM4EsE3rjHc8ONvW6IOCDjiQjs3R1XR3l9N-9GXQmzTmWF9qykCIireqUmSibE6lZB_0LvefJn9rAvpgQ082dLWhDzY01A6dOqWyce3z3-X_Sz-F92Fi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307764669</pqid></control><display><type>article</type><title>Monogenic dihedral quartic extensions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kim, Henry H.</creator><creatorcontrib>Kim, Henry H.</creatorcontrib><description>In this paper, we prove that the number of monogenic dihedral quartic extensions of absolute discriminants
≤
X
is of size
O
(
X
3
4
(
log
X
)
3
)
.</description><identifier>ISSN: 1382-4090</identifier><identifier>EISSN: 1572-9303</identifier><identifier>DOI: 10.1007/s11139-018-0049-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Field Theory and Polynomials ; Fourier Analysis ; Functions of a Complex Variable ; Mathematics ; Mathematics and Statistics ; Number Theory</subject><ispartof>The Ramanujan journal, 2019-11, Vol.50 (2), p.459-464</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-959f6d30fc35c0c0aabd328e799e2085878daf0c46daed5fdc646def90b0501b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11139-018-0049-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11139-018-0049-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kim, Henry H.</creatorcontrib><title>Monogenic dihedral quartic extensions</title><title>The Ramanujan journal</title><addtitle>Ramanujan J</addtitle><description>In this paper, we prove that the number of monogenic dihedral quartic extensions of absolute discriminants
≤
X
is of size
O
(
X
3
4
(
log
X
)
3
)
.</description><subject>Combinatorics</subject><subject>Field Theory and Polynomials</subject><subject>Fourier Analysis</subject><subject>Functions of a Complex Variable</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><issn>1382-4090</issn><issn>1572-9303</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFtBPEYnyWaTHKX4BRUveg7ZfNQtNWmTXdB_b8oKnjzNy_C8M_AgdEnghgCI20IIYQoDkRigqeEIzQgXFCsG7LhmJiluQMEpOitlAxUCJmbo-iXFtPaxtwvXf3iXzXaxH00e6sJ_DT6WPsVyjk6C2RZ_8Tvn6P3h_m35hFevj8_LuxW2tJUDVlyF1jEIlnELFozpHKPSC6U8BcmlkM4EsE3rjHc8ONvW6IOCDjiQjs3R1XR3l9N-9GXQmzTmWF9qykCIireqUmSibE6lZB_0LvefJn9rAvpgQ082dLWhDzY01A6dOqWyce3z3-X_Sz-F92Fi</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Kim, Henry H.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191101</creationdate><title>Monogenic dihedral quartic extensions</title><author>Kim, Henry H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-959f6d30fc35c0c0aabd328e799e2085878daf0c46daed5fdc646def90b0501b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Combinatorics</topic><topic>Field Theory and Polynomials</topic><topic>Fourier Analysis</topic><topic>Functions of a Complex Variable</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Henry H.</creatorcontrib><collection>CrossRef</collection><jtitle>The Ramanujan journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Henry H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monogenic dihedral quartic extensions</atitle><jtitle>The Ramanujan journal</jtitle><stitle>Ramanujan J</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>50</volume><issue>2</issue><spage>459</spage><epage>464</epage><pages>459-464</pages><issn>1382-4090</issn><eissn>1572-9303</eissn><abstract>In this paper, we prove that the number of monogenic dihedral quartic extensions of absolute discriminants
≤
X
is of size
O
(
X
3
4
(
log
X
)
3
)
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11139-018-0049-0</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1382-4090 |
ispartof | The Ramanujan journal, 2019-11, Vol.50 (2), p.459-464 |
issn | 1382-4090 1572-9303 |
language | eng |
recordid | cdi_proquest_journals_2307764669 |
source | SpringerLink Journals - AutoHoldings |
subjects | Combinatorics Field Theory and Polynomials Fourier Analysis Functions of a Complex Variable Mathematics Mathematics and Statistics Number Theory |
title | Monogenic dihedral quartic extensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monogenic%20dihedral%20quartic%20extensions&rft.jtitle=The%20Ramanujan%20journal&rft.au=Kim,%20Henry%20H.&rft.date=2019-11-01&rft.volume=50&rft.issue=2&rft.spage=459&rft.epage=464&rft.pages=459-464&rft.issn=1382-4090&rft.eissn=1572-9303&rft_id=info:doi/10.1007/s11139-018-0049-0&rft_dat=%3Cproquest_cross%3E2307764669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307764669&rft_id=info:pmid/&rfr_iscdi=true |