Classification of rational 1-forms on the Riemann sphere up to PSL(2,C)
We study the family Ω 1 ( - 1 s ) of rational 1-forms on the Riemann sphere, having exactly - s ≤ - 2 simple poles. Three equivalent ( 2 s - 1 ) -dimensional complex atlases on Ω 1 ( - 1 s ) , using coefficients, zeros–poles and residues–poles of the 1-forms, are recognized. A rational 1-form is cal...
Gespeichert in:
Veröffentlicht in: | Boletín de la Sociedad Matemática Mexicana 2019-11, Vol.25 (3), p.597-617 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the family
Ω
1
(
-
1
s
)
of rational 1-forms on the Riemann sphere, having exactly
-
s
≤
-
2
simple poles. Three equivalent
(
2
s
-
1
)
-dimensional complex atlases on
Ω
1
(
-
1
s
)
, using coefficients, zeros–poles and residues–poles of the 1-forms, are recognized. A rational 1-form is called isochronous when all their residues are purely imaginary. We prove that the subfamily
RI
Ω
1
(
-
1
s
)
of isochronous 1-forms is a
(
3
s
-
1
)
-dimensional real analytic submanifold in the complex manifold
Ω
1
(
-
1
s
)
. The complex Lie group
PSL
(
2
,
C
)
acts holomorphically on
Ω
1
(
-
1
s
)
. For
s
≥
3
, the
PSL
(
2
,
C
)
-action is proper on
Ω
1
(
-
1
s
)
and
RI
Ω
1
(
-
1
s
)
. Therefore, the quotients
Ω
1
(
-
1
s
)
/
PSL
(
2
,
C
)
and
RI
Ω
1
(
-
1
s
)
/
PSL
(
2
,
C
)
admit a stratification by orbit types. Realizations for the quotients
Ω
1
(
-
1
s
)
/
PSL
(
2
,
C
)
and
RI
Ω
1
(
-
1
s
)
/
PSL
(
2
,
C
)
are given, using an explicit set of
PSL
(
2
,
C
)
-invariant functions. |
---|---|
ISSN: | 1405-213X 2296-4495 |
DOI: | 10.1007/s40590-018-0217-7 |