On the interplay between hypergeometric series, Fourier–Legendre expansions and Euler sums

In this work we continue the investigation, started in Campbell et al. (On the interplay between hypergeometric functions, complete elliptic integrals and Fourier–Legendre series expansions, arXiv:1710.03221 , 2017 ), about the interplay between hypergeometric functions and Fourier–Legendre ( FL ) s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bollettino della Unione matematica italiana (2008) 2019-12, Vol.12 (4), p.623-656
Hauptverfasser: Cantarini, Marco, D’Aurizio, Jacopo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we continue the investigation, started in Campbell et al. (On the interplay between hypergeometric functions, complete elliptic integrals and Fourier–Legendre series expansions, arXiv:1710.03221 , 2017 ), about the interplay between hypergeometric functions and Fourier–Legendre ( FL ) series expansions. In the section “ Hypergeometric series related to π , π 2 and the lemniscate constant ”, through the FL-expansion of [ x ( 1 - x ) ] μ (with μ + 1 ∈ 1 4 N ) we prove that all the hypergeometric series ∑ n ≥ 0 ( - 1 ) n ( 4 n + 1 ) p ( n ) 1 4 n 2 n n 3 , ∑ n ≥ 0 ( 4 n + 1 ) p ( n ) 1 4 n 2 n n 4 , ∑ n ≥ 0 ( 4 n + 1 ) p ( n ) 2 1 4 n 2 n n 4 , ∑ n ≥ 0 1 p ( n ) 1 4 n 2 n n 3 , ∑ n ≥ 0 1 p ( n ) 1 4 n 2 n n 2 return rational multiples of 1 π , 1 π 2 or the lemniscate constant, as soon as p ( x ) is a polynomial fulfilling suitable symmetry constraints. Additionally, by computing the FL-expansions of log x x and related functions, we show that in many cases the hypergeometric p + 1 F p ( … , z ) function evaluated at z = ± 1 can be converted into a combination of Euler sums. In particular we perform an explicit evaluation of ∑ n ≥ 0 1 ( 2 n + 1 ) 2 1 4 n 2 n n 2 , ∑ n ≥ 0 1 ( 2 n + 1 ) 3 1 4 n 2 n n 2 . In the section “ Twisted hypergeometric series ” we show that the conversion of some p + 1 F p ( … , ± 1 ) values into combinations of Euler sums, driven by FL-expansions, applies equally well to some twisted hypergeometric series, i.e. series of the form ∑ n ≥ 0 a n b n where a n is a Stirling number of the first kind and ∑ n ≥ 0 b n z n = p + 1 F p ( … ; z ) .
ISSN:1972-6724
2198-2759
DOI:10.1007/s40574-019-00198-5