On the (p, q)-Lucas polynomial coefficient bounds of the bi-univalent function class σ

The idea of the present paper stems from the work of Lee and Aşcı (J Appl Math 2012:1–18, 2012 ). We want to remark explicitly that, in our article, by using the ( p ,  q )-Lucas polynomials, our methodology builds a bridge, to our knowledge not previously well known, between the Theory of Geometric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletín de la Sociedad Matemática Mexicana 2019-11, Vol.25 (3), p.567-575
Hauptverfasser: Altınkaya, Şahsene, Yalçın, Sibel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The idea of the present paper stems from the work of Lee and Aşcı (J Appl Math 2012:1–18, 2012 ). We want to remark explicitly that, in our article, by using the ( p ,  q )-Lucas polynomials, our methodology builds a bridge, to our knowledge not previously well known, between the Theory of Geometric Functions and that of Special Functions, which are usually considered as very different fields. Thus, we aim at introducing a new class of bi-univalent functions defined through the ( p ,  q )-Lucas polynomials. Furthermore, we derive coefficient inequalities and obtain Fekete–Szegö problem for this new function class.
ISSN:1405-213X
2296-4495
DOI:10.1007/s40590-018-0212-z