On the (p, q)-Lucas polynomial coefficient bounds of the bi-univalent function class σ
The idea of the present paper stems from the work of Lee and Aşcı (J Appl Math 2012:1–18, 2012 ). We want to remark explicitly that, in our article, by using the ( p , q )-Lucas polynomials, our methodology builds a bridge, to our knowledge not previously well known, between the Theory of Geometric...
Gespeichert in:
Veröffentlicht in: | Boletín de la Sociedad Matemática Mexicana 2019-11, Vol.25 (3), p.567-575 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The idea of the present paper stems from the work of Lee and Aşcı (J Appl Math 2012:1–18,
2012
). We want to remark explicitly that, in our article, by using the (
p
,
q
)-Lucas polynomials, our methodology builds a bridge, to our knowledge not previously well known, between the Theory of Geometric Functions and that of Special Functions, which are usually considered as very different fields. Thus, we aim at introducing a new class of bi-univalent functions defined through the (
p
,
q
)-Lucas polynomials. Furthermore, we derive coefficient inequalities and obtain Fekete–Szegö problem for this new function class. |
---|---|
ISSN: | 1405-213X 2296-4495 |
DOI: | 10.1007/s40590-018-0212-z |