X-coordinates of Pell equations which are Lucas numbers
For an integer d ≥ 2 which is not a square, we show that there is at most one value of the positive integer X participating in the Pell equation X 2 - d Y 2 = ± 1 which is a Lucas number, with a few exceptions that we completely characterize.
Gespeichert in:
Veröffentlicht in: | Boletín de la Sociedad Matemática Mexicana 2019-11, Vol.25 (3), p.481-493 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For an integer
d
≥
2
which is not a square, we show that there is at most one value of the positive integer
X
participating in the Pell equation
X
2
-
d
Y
2
=
±
1
which is a Lucas number, with a few exceptions that we completely characterize. |
---|---|
ISSN: | 1405-213X 2296-4495 |
DOI: | 10.1007/s40590-018-0221-y |