Mesoporous Silica‐Encaged Ultrafine Bimetallic Nanocatalysts for CO2 Hydrogenation to Formates

CO2 hydrogenation to formic acid/formate has been recognized as a key reaction to realizing the CO2‐mediated hydrogen energy cycle. Herein, ultrafine and well‐dispersed Pd−CoO nanoparticles (∼1.8 nm) were encapsulated within mesoporous silica nanospheres (MSNs) via a facile one‐pot ligand‐protected...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2019-10, Vol.11 (20), p.5093-5097
Hauptverfasser: Sun, Qiming, Fu, Xinpu, Si, Rui, Wang, Chi‐Hwa, Yan, Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CO2 hydrogenation to formic acid/formate has been recognized as a key reaction to realizing the CO2‐mediated hydrogen energy cycle. Herein, ultrafine and well‐dispersed Pd−CoO nanoparticles (∼1.8 nm) were encapsulated within mesoporous silica nanospheres (MSNs) via a facile one‐pot ligand‐protected synthesis strategy. The MSN‐encaged bimetallic nanocatalysts exhibit excellent catalytic activity and stability for the formate production from CO2 hydrogenation, showing high turnover frequency value up to 1824 h−1 at 373 K, which is among the top‐level reported for heterogeneous catalysts. Formate production: A facile one‐pot ligand‐protected synthesis strategy has been developed to encapsulate ultrafine and well‐dispersed bimetallic Pd−CoO NPs inside mesoporous silica nanospheres channels. The nanocatalysts have excellent catalytic activity and stability for formate synthesis via CO2 hydrogenation, affording a TOF value of 1824 h−1 at 373 K. The simple synthesis method, the excellent catalytic activity, and catalyst durability promise larger‐scale application for the CO2‐mediated hydrogen energy cycle empowered by heterogeneous catalysts.
ISSN:1867-3880
1867-3899
DOI:10.1002/cctc.201901167