BARP: Improving Mister P Using Bayesian Additive Regression Trees

Multilevel regression and post-stratification (MRP) is the current gold standard for extrapolating opinion data from nationally representative surveys to smaller geographic units. However, innovations in nonparametric regularization methods can further improve the researcher’s ability to extrapolate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American political science review 2019-11, Vol.113 (4), p.1060-1065
1. Verfasser: BISBEE, JAMES
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multilevel regression and post-stratification (MRP) is the current gold standard for extrapolating opinion data from nationally representative surveys to smaller geographic units. However, innovations in nonparametric regularization methods can further improve the researcher’s ability to extrapolate opinion data to a geographic unit of interest. I test an ensemble of regularization algorithms and find that there is room for substantial improvement on the multilevel model via more flexible methods of regularization. I propose a modified version of MRP that replaces the multilevel model with a nonparametric approach called Bayesian additive regression trees (BART or, when combined with post-stratification, BARP). I compare both methods across a number of data contexts, demonstrating the benefits of applying more powerful regularization methods to extrapolate opinion data to target geographical units. I provide an R package that implements the BARP method.
ISSN:0003-0554
1537-5943
DOI:10.1017/S0003055419000480