A simple counting argument of the irreducible representations of SU(N) on mixed product spaces

That the number of irreducible representations of the special unitary group SU ( N ) on V ⊗ k (which is also the number of Young tableaux with k boxes) is given by the number of involutions in S k is a well-known result (see, e.g., Knuth in The art of computer programming, volume 3—sorting and searc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic combinatorics 2019-11, Vol.50 (3), p.281-291
Hauptverfasser: Alcock-Zeilinger, J., Weigert, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:That the number of irreducible representations of the special unitary group SU ( N ) on V ⊗ k (which is also the number of Young tableaux with k boxes) is given by the number of involutions in S k is a well-known result (see, e.g., Knuth in The art of computer programming, volume 3—sorting and searching, 2nd ed, Addison-Wesley, Boston, 1998 and other standard textbooks). In this paper, we present an alternative proof for this fact using a basis of projection and transition operators (Alcock-Zeilinger and Weigert J Math Phys 58(5):051702, 2017 , J Math Phys 58(5):051703, 2017 ) of the algebra of invariants of SU ( N ) on V ⊗ k . This proof is shown to easily generalize to the irreducible representations of SU ( N ) on mixed product spaces V ⊗ m ⊗ V ∗ ⊗ n , implying that the number of irreducible representations of SU ( N ) on a product space V ⊗ m ⊗ V ∗ ⊗ n remains unchanged if one exchanges factors V for V ∗ and vice versa, as long as the total number of factors remains unchanged, c.f. Corollary  1 .
ISSN:0925-9899
1572-9192
DOI:10.1007/s10801-018-0853-z