The Polyanalytic Reproducing Kernels
Let ν be a rotation invariant Borel probability measure on the complex plane having moments of all orders. Given a positive integer q , it is proved that the space of ν -square integrable q -analytic functions is the closure of q -analytic polynomials, and in particular it is a Hilbert space. We est...
Gespeichert in:
Veröffentlicht in: | Complex analysis and operator theory 2019-10, Vol.13 (7), p.3457-3478 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
ν
be a rotation invariant Borel probability measure on the complex plane having moments of all orders. Given a positive integer
q
, it is proved that the space of
ν
-square integrable
q
-analytic functions is the closure of
q
-analytic polynomials, and in particular it is a Hilbert space. We establish a general formula for the corresponding polyanalytic reproducing kernel. New examples are given and all known examples, including those of the analytic case are covered. In particular, weighted Bergman and Fock type spaces of polyanalytic functions are introduced. Our results have a higher dimensional generalization for measure on
C
p
which are in rotation invariant with respect to each coordinate. |
---|---|
ISSN: | 1661-8254 1661-8262 |
DOI: | 10.1007/s11785-019-00956-5 |