A survey on wearable sensor modality centred human activity recognition in health care
•Discuss limitations and strengths of different sensor modalities.•Focus on the detailed techniques of wearable sensor-based systems.•Survey both hand-crafted and the deep learned features.•Identify the challenges for further improvement. Increased life expectancy coupled with declining birth rates...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2019-12, Vol.137, p.167-190 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Discuss limitations and strengths of different sensor modalities.•Focus on the detailed techniques of wearable sensor-based systems.•Survey both hand-crafted and the deep learned features.•Identify the challenges for further improvement.
Increased life expectancy coupled with declining birth rates is leading to an aging population structure. Aging-caused changes, such as physical or cognitive decline, could affect people's quality of life, result in injuries, mental health or the lack of physical activity. Sensor-based human activity recognition (HAR) is one of the most promising assistive technologies to support older people's daily life, which has enabled enormous potential in human-centred applications. Recent surveys in HAR either only focus on the deep learning approaches or one specific sensor modality. This survey aims to provide a more comprehensive introduction for newcomers and researchers to HAR. We first introduce the state-of-art sensor modalities in HAR. We look more into the techniques involved in each step of wearable sensor modality centred HAR in terms of sensors, activities, data pre-processing, feature learning and classification, including both conventional approaches and deep learning methods. In the feature learning section, we focus on both hand-crafted features and automatically learned features using deep networks. We also present the ambient-sensor-based HAR, including camera-based systems, and the systems which combine the wearable and ambient sensors. Finally, we identify the corresponding challenges in HAR to pose research problems for further improvement in HAR. |
---|---|
ISSN: | 0957-4174 1873-6793 |
DOI: | 10.1016/j.eswa.2019.04.057 |