Spectrum of anomalous dimensions in hypercubic theories

We compute the spectrum of anomalous dimensions of nonderivative composite operators with an arbitrary number of fields n in the O(N) vector model with cubic anisotropy at the one-loop order in the ε expansion. The complete closed-form expression for the anomalous dimensions of the operators which d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2019-09, Vol.100 (6), Article 065008
Hauptverfasser: Antipin, Oleg, Bersini, Jahmall
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We compute the spectrum of anomalous dimensions of nonderivative composite operators with an arbitrary number of fields n in the O(N) vector model with cubic anisotropy at the one-loop order in the ε expansion. The complete closed-form expression for the anomalous dimensions of the operators which do not undergo mixing effects is derived, and the structure of the general solution to the mixing problem is outlined. As examples, the full explicit solution for operators with up to n=6 fields is presented and a sample of the operator product expansion coefficients is calculated. The main features of the spectrum are described, including an interesting pattern pointing to the deeper structure.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.100.065008