Approximate Equilibria in Generalized Colonel Blotto and Generalized Lottery Blotto Games
In the Colonel Blotto game, two players with a fixed budget simultaneously allocate their resources across n battlefields to maximize the aggregate value gained from the battlefields where they have the higher allocation. Despite its long-standing history and important applications, the Colonel Blot...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the Colonel Blotto game, two players with a fixed budget simultaneously allocate their resources across n battlefields to maximize the aggregate value gained from the battlefields where they have the higher allocation. Despite its long-standing history and important applications, the Colonel Blotto game still lacks a complete Nash equilibrium characterization in its most general form where players are asymmetric and battlefields' values are heterogeneous across battlefields and different between the two players---this is called the Generalized Colonel Blotto game. In this work, we propose a simply-constructed class of strategies---the independently uniform strategies---and we prove that they are approximate equilibria of the Generalized Colonel Blotto game; moreover, we characterize the approximation error according to the game's parameters. We also consider an extension called the Generalized Lottery Blotto game, with stochastic winner-determination rules allowing more flexibility in modeling practical contests. We prove that the proposed strategies are also approximate equilibria of the Generalized Lottery Blotto game. |
---|---|
ISSN: | 2331-8422 |