A rounding theorem for unique binary tomographic reconstruction

Discrete tomography deals with the reconstruction of images from projections collected along a few given directions. Different approaches can be considered, according to different models. In this paper we adopt the grid model, where pixels are lattice points with integer coordinates, X-rays are disc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2019-09, Vol.268, p.54-69
Hauptverfasser: Dulio, Paolo, Pagani, Silvia M.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Discrete tomography deals with the reconstruction of images from projections collected along a few given directions. Different approaches can be considered, according to different models. In this paper we adopt the grid model, where pixels are lattice points with integer coordinates, X-rays are discrete lattice lines, and projections are obtained by counting the number of lattice points intercepted by X-rays taken in the assigned directions. We move from a theoretical result that allows uniqueness of reconstruction in the grid with just four suitably selected X-ray directions. In this framework, the structure of the allowed ghosts is studied and described. This leads to a new result, stating that the unique binary solution can be explicitly and exactly retrieved from the minimum Euclidean norm solution by means of a rounding method based on some special entries, which are precisely determined. A corresponding iterative algorithm has been implemented, and tested on a few phantoms having different characteristics and structure.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2019.05.005