A rounding theorem for unique binary tomographic reconstruction
Discrete tomography deals with the reconstruction of images from projections collected along a few given directions. Different approaches can be considered, according to different models. In this paper we adopt the grid model, where pixels are lattice points with integer coordinates, X-rays are disc...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2019-09, Vol.268, p.54-69 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Discrete tomography deals with the reconstruction of images from projections collected along a few given directions. Different approaches can be considered, according to different models. In this paper we adopt the grid model, where pixels are lattice points with integer coordinates, X-rays are discrete lattice lines, and projections are obtained by counting the number of lattice points intercepted by X-rays taken in the assigned directions.
We move from a theoretical result that allows uniqueness of reconstruction in the grid with just four suitably selected X-ray directions. In this framework, the structure of the allowed ghosts is studied and described. This leads to a new result, stating that the unique binary solution can be explicitly and exactly retrieved from the minimum Euclidean norm solution by means of a rounding method based on some special entries, which are precisely determined. A corresponding iterative algorithm has been implemented, and tested on a few phantoms having different characteristics and structure. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2019.05.005 |