A machine learning-based methodology to predict learners’ dropout, success or failure in MOOCs

PurposeEven if MOOCs (massive open online courses) are becoming a trend in distance learning, they suffer from a very high rate of learners’ dropout, and as a result, on average, only 10 per cent of enrolled learners manage to obtain their certificates of achievement. This paper aims to give tutors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of Web information systems 2019-12, Vol.15 (5), p.489-509
Hauptverfasser: Mourdi, Youssef, Sadgal, Mohamed, El Kabtane, Hamada, Berrada Fathi, Wafaa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:PurposeEven if MOOCs (massive open online courses) are becoming a trend in distance learning, they suffer from a very high rate of learners’ dropout, and as a result, on average, only 10 per cent of enrolled learners manage to obtain their certificates of achievement. This paper aims to give tutors a clearer vision for an effective and personalized intervention as a solution to “retain” each type of learner at risk of dropping out.Design/methodology/approachThis paper presents a methodology to provide predictions on learners’ behaviors. This work, which uses a Stanford data set, was divided into several phases, namely, a data extraction, an exploratory study and then a multivariate analysis to reduce dimensionality and to extract the most relevant features. The second step was the comparison between five machine learning algorithms. Finally, the authors used the principle of association rules to extract similarities between the behaviors of learners who dropped out from the MOOC.FindingsThe results of this work have given that deep learning ensures the best predictions in terms of accuracy, which is an average of 95.8 per cent, and is comparable to other measures such as precision, AUC, Recall and F1 score.Originality/valueMany research studies have tried to tackle the MOOC dropout problem by proposing different dropout predictive models. In the same context, comes the present proposal with which the authors have tried to predict not only learners at a risk of dropping out of the MOOCs but also those who will succeed or fail.
ISSN:1744-0084
1744-0092
DOI:10.1108/IJWIS-11-2018-0080