Group compatible intuitionistic fuzzy matrices

Let G be a finite group. We define in this paper what is called G -compatible intuitionistic fuzzy matrices and we prove some of their fundamental properties. Of course, these matrices are square (since G is finite). However, the first row of our matrices play an important role in this study. The se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2019-12, Vol.38 (4), p.1-14, Article 193
1. Verfasser: Emam, E. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a finite group. We define in this paper what is called G -compatible intuitionistic fuzzy matrices and we prove some of their fundamental properties. Of course, these matrices are square (since G is finite). However, the first row of our matrices play an important role in this study. The set of all G -compatible intuitionistic fuzzy matrices is a commutative semiring with respect to the operations ∨ and ∘ , respectively. Also, we study the G - Min -compatible intuitionistic fuzzy matrices and prove some of their properties. We have also provide some examples to clarify our notions and results.
ISSN:2238-3603
1807-0302
DOI:10.1007/s40314-019-0975-5