Yielding and jerky plasticity of tilt grain boundaries in high-temperature graphene

Graphene is well known for its extraordinary mechanical properties combining brittleness and ductility. While most mechanical studies of graphene focused on the strength and brittle fracture behavior, its ductility, plastic deformation, and the possible brittle-to-ductile transition, which are impor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2019-11, Vol.153, p.242-256
Hauptverfasser: Zhou, Wenquan, Wang, Jincheng, Lin, Bo, Wang, Zhijun, Li, Junjie, Huang, Zhi-Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graphene is well known for its extraordinary mechanical properties combining brittleness and ductility. While most mechanical studies of graphene focused on the strength and brittle fracture behavior, its ductility, plastic deformation, and the possible brittle-to-ductile transition, which are important for high-temperature mechanical performance and applications, still remain much less understood. Here the mechanical response and deformation dynamics of graphene grain boundaries are investigated through a phase field crystal modeling, showing the pivotal effects of temperature and local dislocation structure. Our results indicate that even at relatively high temperature (around 3350 K), the system is still governed by a brittle fracture and cracking dynamics as found in previous low-temperature experimental and atomistic studies. We also identify another type of failure dynamics with low-angle grain boundary disintegration. When temperature increases a transition to plastic deformation is predicted. The appearance of plastic flow at ultrahigh temperature, particularly the phenomenon of jerky plasticity, is attributed to the stick and climb-glide motion of dislocations around the grain boundary. The corresponding mechanism is intrinsic to two-dimensional systems, and governed by the competition between the driving force of accumulated local stress and the defect pinning effect, without the traditional pathways of dislocation generation needed in three-dimensional materials. [Display omitted]
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2019.06.109