Asymptotic expansion of generalized Witten integrals for Hamiltonian circle actions

We derive a complete asymptotic expansion of generalized Witten integrals for Hamiltonian circle actions on arbitrary symplectic manifolds, characterizing the coefficients in the expansion as integrals over the symplectic strata of the corresponding Marsden-Weinstein reduced space and distributions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-03
Hauptverfasser: Küster, Benjamin, Ramacher, Pablo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive a complete asymptotic expansion of generalized Witten integrals for Hamiltonian circle actions on arbitrary symplectic manifolds, characterizing the coefficients in the expansion as integrals over the symplectic strata of the corresponding Marsden-Weinstein reduced space and distributions on the Lie algebra. The obtained coefficients involve singular contributions of the lower-dimensional strata related to numerical invariants of the fixed-point set.
ISSN:2331-8422