ConvAE: A New Channel Autoencoder Based on Convolutional Layers and Residual Connections

In this letter, we propose ConvAE, a new channel autoencoder structure. ConvAE uses residual blocks with convolutional layers. This configuration increases performance while decreasing computational complexity at run-time compared with conventional channel autoencoders. The simulations using both co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2019-10, Vol.23 (10), p.1769-1772
Hauptverfasser: Ji, Dong Jin, Park, Jinsol, Cho, Dong-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, we propose ConvAE, a new channel autoencoder structure. ConvAE uses residual blocks with convolutional layers. This configuration increases performance while decreasing computational complexity at run-time compared with conventional channel autoencoders. The simulations using both conventional and proposed autoencoders for a 2-by-2 multiple-input multiple-output (MIMO) system under Rayleigh and Nakagami-m fading show that the ConvAE is able to attain a lower bit error rate and higher achievable rate relative to the conventional channel autoencoder schemes.
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2019.2930287