[Formula Omitted]-Band Fully Metallic TE40 Slot Array Antenna With Glide-Symmetric Gap Waveguide Technology
Gap waveguide has recently been proposed as a low-loss and low-cost technology for millimeter-wave components. The main advantage of the gap waveguide technology is that the microwave components can be manufactured in two metallic pieces that are assembled together without electrical contact. The le...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2019-01, Vol.67 (10), p.6410 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gap waveguide has recently been proposed as a low-loss and low-cost technology for millimeter-wave components. The main advantage of the gap waveguide technology is that the microwave components can be manufactured in two metallic pieces that are assembled together without electrical contact. The leakage through a thin air gap between the two pieces is prevented by a 2-D periodic structure offering an electromagnetic bandgap (EBG). This EBG is conventionally implemented with metallic pins. Here, we propose the usage of a holey glide-symmetric EBG structure to design a [Formula Omitted] slot array antenna that is fed with a TE40 mode. The TE40 excitation is designed based on a TE10–TE20 mode converter whose performance is initially evaluated by radiation pattern measurements. The final antenna, the [Formula Omitted] slot array antenna, was manufactured in aluminum by computer numerical control (CNC) milling. The antenna has a rotationally symmetric radiation pattern that could find application as a reference antenna as well as for 5G point-to-point communications. |
---|---|
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/TAP.2019.2922829 |