Locality Preserved Joint Nonnegative Matrix Factorization for Speech Emotion Recognition

This study presents a joint dictionary learning approach for speech emotion recognition named locality preserved joint nonnegative matrix factorization (LP-JNMF). The learned representations are shared between the learned dictionaries and annotation matrix. Moreover, a locality penalty term is incor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2019/04/01, Vol.E102.D(4), pp.821-825
Hauptverfasser: MATHULAPRANGSAN, Seksan, LEE, Yuan-Shan, WANG, Jia-Ching
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents a joint dictionary learning approach for speech emotion recognition named locality preserved joint nonnegative matrix factorization (LP-JNMF). The learned representations are shared between the learned dictionaries and annotation matrix. Moreover, a locality penalty term is incorporated into the objective function. Thus, the system's discriminability is further improved.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.2018DAL0002