Entropy Based Illumination-Invariant Foreground Detection

Background subtraction algorithms generate a background model of the monitoring scene and compare the background model with the current video frame to detect foreground objects. In general, most of the background subtraction algorithms fail to detect foreground objects when the scene illumination ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2019/07/01, Vol.E102.D(7), pp.1434-1437
Hauptverfasser: RAJAMANICKAM, Karthikeyan PANJAPPAGOUNDER, PERIYASAMY, Sakthivel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background subtraction algorithms generate a background model of the monitoring scene and compare the background model with the current video frame to detect foreground objects. In general, most of the background subtraction algorithms fail to detect foreground objects when the scene illumination changes. An entropy based background subtraction algorithm is proposed to address this problem. The proposed method adapts to illumination changes by updating the background model according to differences in entropy value between the current frame and the previous frame. This entropy based background modeling can efficiently handle both sudden and gradual illumination variations. The proposed algorithm is tested in six video sequences and compared with four algorithms to demonstrate its efficiency in terms of F-score, similarity and frame rate.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.2018EDL8247