Entropy Based Illumination-Invariant Foreground Detection
Background subtraction algorithms generate a background model of the monitoring scene and compare the background model with the current video frame to detect foreground objects. In general, most of the background subtraction algorithms fail to detect foreground objects when the scene illumination ch...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2019/07/01, Vol.E102.D(7), pp.1434-1437 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background subtraction algorithms generate a background model of the monitoring scene and compare the background model with the current video frame to detect foreground objects. In general, most of the background subtraction algorithms fail to detect foreground objects when the scene illumination changes. An entropy based background subtraction algorithm is proposed to address this problem. The proposed method adapts to illumination changes by updating the background model according to differences in entropy value between the current frame and the previous frame. This entropy based background modeling can efficiently handle both sudden and gradual illumination variations. The proposed algorithm is tested in six video sequences and compared with four algorithms to demonstrate its efficiency in terms of F-score, similarity and frame rate. |
---|---|
ISSN: | 0916-8532 1745-1361 |
DOI: | 10.1587/transinf.2018EDL8247 |